2 00 4 Wavelets : Mathematics and Applications
نویسنده
چکیده
The notion of wavelets is defined. It is briefly described what are wavelets, how to use them, when we do need them, why they are preferred and where they have been applied. Then one proceeds to the multiresolution analysis and fast wavelet transform as a standard procedure for dealing with discrete wavelets. It is shown which specific features of signals (functions) can be revealed by this analysis, but can not be found by other methods (e.g., by the Fourier expansion). Finally, some examples of practical application are given. Rigorous proofs of mathematical statements are omitted, and the reader is referred to the corresponding literature.
منابع مشابه
Fractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions
In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...
متن کاملar X iv : m at h / 03 07 31 7 v 1 [ m at h . FA ] 2 3 Ju l 2 00 3 GROUPS , WAVELETS , AND WAVELET SETS
Wavelet and frames have become a widely used tool in mathematics, physics, and applied science during the last decade. This article gives an overview over some well known results about the continuous and discrete wavelet transforms and groups acting on R n. We also show how this action can give rise to wavelets, and in particular, MSF wavelets)in L 2 (R n).
متن کاملWilson wavelets for solving nonlinear stochastic integral equations
A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...
متن کاملSome Results on Convex Spectral Functions: I
In this paper, we give a fundamental convexity preserving for spectral functions. Indeed, we investigate infimal convolution, Moreau envelope and proximal average for convex spectral functions, and show that this properties are inherited from the properties of its corresponding convex function. This results have many applications in Applied Mathematics such as semi-definite programmings and eng...
متن کاملA recursive construction of a class of finite normalized tight frames
Finite normalized tight frames are interesting because they provide decompositions in applications and some physical interpretations. In this article, we give a recursive method for constructing them.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004